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ABSTRACT
An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for
use on unstructured grids. The implementation is based on the use of local background struc-
tured turbulence meshes. At each time-step, flow variables are interpolated from the unstruc-
tured mesh onto the background structured meshes, the turbulence model is executed on these
meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh.
Modifications to the algebraic model were required to enable the treatment of more compli-
cated flows, such as confluent boundary layers and wakes. The model is used in conjunction
with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute
compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple
element airfoils are obtained and compared with experimental data. ... o For
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1. INTRODUCTION

The use of unstructured mesh techniques for computational fluid dynamics (CFD) prob-
lems has become more widespread in recent years, due to the flexibility they afford in discre-
tizing arbitrarily complex geometries, and due to the possibility they offer in resolving highly
localized flow phenomena through the use of adaptive meshing. However, research on
unstructured mesh techniques for CFD has concentrated almost exclusively on the solution of
the Euler equations in two or three dimensions. For viscous flow calculations about non-
simple geometries, hybrid meshes have generally been employed [1,2,31 where a thin struc-
tured mesh is placed in the boundary-layer and wake regions, and an unstructured mesh is con-
structed in the outer inviscid region of the flow-field. Besides leading to an increase in coding
complexity, this type of compromise limits the generality of the unstructured mesh approach in
dealing with arbitrarily complex geometries, such as multiple body geometries with close toler-
ances, where confluent boundary layers or wakes may occur, and complicates the task of per-
forming adaptive meshing in the inviscid as well as viscous regions of flow. It appears that
the difficulties associated with generating highly stretched unstructured meshes, which are
required for efficiently resolving viscous shear layers, as well as the efficient implementation of
a turbulence model on such meshes, has generally impeded the use of fully unstructured
meshes for viscous flows. The use of unstructured meshes throughout the entire flow-field is
advocated in the present work. Previous work by the author has shown how a highly stretched
unstructured mesh, suitable for high-Reynolds-number viscous flow calculations may be con-
structed [4], and has also discussed the development of an efficient unstructured Navier-Stokes
solver for laminar flows [5]. This paper is thus concerned with the efficient implementation of
a turbulence model for computing high-Reynolds-number turbulent flows using fully unstruc-
tured meshes.

The most widespread turbulence models in use currently are either of the multiple field-
equation type, or of the algebraic type. Field-equation turbulence models (such as the K-C
model) are in principle more general than their algebraic counterparts, and appear well suited
for use on unstructured meshes; the additional field-equations may be discretized and solved on
the unstructured mesh in the same fashion as the governing flow equations. However, the
solution of additional field-equations can be considerably expensive, especially in the thin
boundary-layer regions near the wall, where the equations can become considerably stiff.
Algebraic turbulence models, on the other hand, are relatively inexpensive to compute, and
have demonstrated generally superior accuracy and reliability for limited classes of problems,
such as high-Reynolds-number attached flows over streamlined bodies. However, such models
typically require information concerning the distance of each mesh point from the nearest wall.
Turbulence length scales, which are related to the local boundary-layer or wake thickness, are
determined by scanning the appropriate flow values along specified streamwise stations. In the
context of unstructured meshes, mesh points do not naturally occur at regular streamwise loca-
tions. Hence, the implementation of algebraic models on such meshes is not entirely straight-
forward. Davis and Dannenhoffer [61 have implemented an algebraic model for use on heavily
adpted quadrilateral meshes. The meshes are semi-structured in nature, and only a subset of
the wall boundary points can be identified with mesh lines spanning the entire shear layer. A
method for constructing turbulence quantities at all points is employed, which makes use of
flow variables interpolated from neighboring mesh lines. Kallinderis 171 employs a similar
approach and describes how the process may be extended to unstructured triangular meshes.
The first successful implementation of an algebraic turbulence model on unstructured meshes,



-2-

however, appears to be due to Rostand [8]. In his work, additional mesh lines normal to the
wall, emanating from each boundary point, are constructed. The unstructured mesh flow vari-
ables are interpolated onto these lines, and the algebraic turbulence model is executed on each
normal mesh line. Rostand's work, however, is confined to supersonic flows over ramp
geometries, and thus lacks the generality required for more complex geometries.

To construct a turbulence model suitable for use on unstructured meshes, one must ensure
that the inherent capabilities and advantages of unstructured mesh techniques are not hindered
by the implementation of the turbulence model. Hence, an algebraic turbulence model capable
of dealing with arbitrarily complex geometries and amenable to adaptive meshing techniques
must be devised. Furthermore, the overhead incurred by the turbulence modeling routine must
represent a small fraction of the overall computational effort, in order to ensure a competitive
solution procedure. The contributions of this work are twofold. In a first part, a method for
efficiently implementing an arbitrary equilibrium algebraic turbulence model on unstructured
meshes is described. In a second part, modifications to the Baldwin-Lomax model [91, which
enable the treatment of multiple shear layers, such as boundary-layer wake interactions, are
described.

2. IMPLEMENTATIONAL PROCEDURE

The general procedure employed for implementing an algebraic turbulence model on an
unstructured mesh consists of constructing local structured meshes about each geometry com-
ponent or each wall boundary. Each time the turbulence routine is called, the current flow
variables are interpolated from the unstructured mesh onto the multiple background structured
turbulence meshes. The algebraic turbulence model is executed on these meshes, and the
resulting eddy viscosity values are interpolated back to the unstructured mesh, for subsequent
use in the flow solution phase. The local structured meshes are constructed using a hyperbolic
mesh generator [10], which uses, as its initial condition, the boundary point distribution of the
unstructured mesh on the geometry component being considered. The use of local hyperboli-
cally generated meshes is akin to the construction of normal mesh lines emanating from each
boundary point, as originally employed by Rostand [81, but with an additional degree of
sophistication which prevents the cross-over of normal mesh lines in the vicinity of concave
boundaries, ensures a smooth variation of mesh points in the normal direction, and enables the
handling of more complex multiple-body geometries.

2.1. Construction of Local Turbulence Meshes

Local structured turbulence meshes are constructed using a hyperbolic mesh generator
[101. Hyperbolic mesh generators required an initial boundary point distribution, and a distri-

bution of normal mesh spacings. For wall boundaries, the boundary points of the unstructured
mesh are employed as the initial condition for the hyperbolic mesh generator. A normal mesh
spacing is specified, which closely approximates the spacing of the unstructured mesh in the
region near the wall. Thus, a close matching between the resolution of the local structured
meshes and the unstructured mesh is achieved, and the local meshes share the same boundary
points as the global unstructured mesh. For modeling turbulent wakes, a fictitious wake line
may be drawn, which approximates the expected position of the computed wake. Points are
then placed along this line, and a hyperbolic mesh is generated on either side of the wake line,
closely approximating the local resolution of the underlying unstructured mesh. In the present
work, which has been mainly concerned with multi-element airfoil geometries, a C-type hyper-
bolic mesh is generated about each airfoil element, which is used for the turbulence modeling
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in the airfoil wall region as well as in the wake region. The wake lines are predetermined by
solving the inviscid flow over the entire configuration using a panel method [11. For multiple
body geometries, structured turbulence mesh lines are terminated if they intersect a neighboring
geometry component. In this manner, the eddy viscosity in any region of the flow-field is only
determined by the turbulence stations emanating from boundary or wake points which are
directly visible from that location (c.f. Figures 12 and 18).

2.2. Interpolation Procedure

In order to execute the turbulence model, flow variables must be interpolated from the
unstructured mesh onto the local turbulence meshes, and the resulting eddy viscosity values
must be interpolated back onto the unstructured mesh. Since linear interpolation is most easily
performed using triangular elements, the local turbulence meshes are triangulated. The sim-
plest way of triangulating a structured mesh is to subdivide each quadrilateral into two trian-
gles. However, in anticipation of the subsequent use of adaptive meshing tchniques, a
Delaunay triangulation of the set of points constituting each local turbulence mesh is more
desirable. Hence, after the initial triangulation of these meshes is performed, the edges are
swapped using the edge swapping algorithm described in [4], according to the modified
Delaunay criterion, in order to obtain a Delaunay triangulation.

The patterns for transferring variables back and forth between the global unstructured
mesh and the local turbulence meshes are then determined using an efficient tree-search rou-
tine. This operation is similar to that described in [12], for transferring variables between
sequences of unstructured triangular meshes, in the context of a multigrid algorithm. Using
neighbor information, this type of search is capable of determining the enclosing triangle on
one grid for each point of another grid. Once the enclosing triangle of a given point is known,
the interpolation coefficients can be determined from geometrical considerations. The entire
process for all grid points can be performed in 0(N) operations, where N is the total number of
grid points. The process is performed once, as a preprocessing operation, and the transfer
addresses and coefficients are stored for subsequent use in the flow solution phase.

Since each background turbulence mesh only covers a portion of the domain spanned by
the global unstructured mesh, not all unstructured mesh points will be contained in some par-
ticular triangle of the local background meshes. To avoid failure of the tree-search algorithm,
points which lie in the region not covered by the background meshes must first be determined,
and omitted from the search in the interpolation routine. Furthermore, since two or more back-
ground turbulence meshes may overlap in various regions of the flow field, unstructured grid
nodes may receive multiple eddy viscosity values, one from each of the overlapping turbulence
meshes in that region. The final eddy viscosity value taken at such points consists of a
weighted average of the multiple interpolated values, where each of the values is weighted by a
factor proportional to the inverse of the distance between that point and the respective boun-
dary point of the corresponding turbulence mesh station. This provides for a smooth distribu-
tion of eddy viscosity in regions such as between two neighboring walls, or between a wall
and a neighboring wake line.

2.3. Adaptive Meshing Capability

One of the major advantages afforded by the use of unstructured meshes is the ability to
easily perform adaptive meshing. The most efficient adaptive techniques are based on local
mesh enrichment and restructuring, rather than global mesh regeneration. Thus, the current tur-
bulence model implementation must be compatible with such adaptive meshing strategies. This
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can be achieved by locally refining each background turbulence mesh at each stage when the
global unstructured mesh is adapted, in such a manner that the resolution of the background
turbulence meshes closely follows the evolving resolution of the adapted global unstructured
mesh. For example, assuming an unstructured mesh and a set of background turbulence
meshes have been constructed, and the turbulent flow solved for on these meshes, a new global
unstructured mesh may be constructed by adding points to the existing mesh in regions of high
flow gradients, and locally retriangulating [4]. A refinement field vector may be constructed,
prior to the retriangulation step, by assigning the value 1.0 to each vertex of a triangle or edge
which is to be refined, and the value 0.0 to all other nodes. This so-called refinement field
vector can now be interpolated onto the background turbulence meshes and used to determine
the regions of the turbulence meshes which require refinement. These background turbulence
meshes may thus, in turn, be adaptively refined, but only in such a way as to preserve their
original structure, i.e., as a set of normal mesh lines emanating from boundary points. Thus,
the interpolated refinement field values are scanned along each normal mesh line and new
points are added along the mesh line in regions where the refinement field values approach
unity, thus increasing the normal resolution of the existing turbulence mesh lines. In regions
where new unstructured mesh boundary points have been added, a new turbulence mesh station
is constructed, which extends from the new boundary point out to the outer boundary of the
local turbulence mesh. The normal distribution of points along this new station is determined
by averaging the location of points from the two neighboring mesh stations. By allowing for
only these two types of refinement, normal refinement of existing stations, and the generation
of entire new stations, the structure of the turbulence meshes is preserved. However, the
requirement of generating new stations which extend out to the oucer boundary of the tur-
bulence meshes may have the effect of adding mesh points to the turbulence meshes in regions
where the underlying unstructured mesh is not refined, and may result in a more rapid growth
of the number of turbulence mesh points than the unstructured mesh points. However, this has
not been found to be a problem generally, probably due to the fact that the normal resolution
of the turbulence meshes is very sparse in the far-field. Since the background turbulence
meshes have previously been triangulated, the new adaptively refined turbulence meshes may
be constructed by inserting each new mesh point into the existing triangulation and restructur-
ing locally using Bowyer's Delaunay triangulation algorithm [41, thus generating the Delaunay
triangulation of the new set of points. The interpolation patterns for transferring variables back
and forth between the newly adapted global mesh and the new local turbulence meshes are
then recomputed, and the flow solution process is resumed. It should be noted that the initial
and subsequent adaptive triangulation of the turbulence meshes is only required for the deter-
mination of the interpolation transfer patterns, and is not required for the actual execution of
the turbulence model.

2.4. Data Structures

The efficient implementation of the present turbulence model on unstructured meshes
depends heavily on the use of adequate preprocessing of the turbulence mesh quantities, and
the use of suitable data structures for storing and accessing the relevant information. Once a
global unstructured mesh has been generated, the local background turbulence meshes are
automatically generated from the boundary point distribution of the unstructured mesh. These
meshes are then arranged into stations, by constructing a list of points for each normal tur-
bulence mesh line, augmented by some additional directives to be employed in the turbulence
model. The transfer coefficients and addresses for interpolating back and forth between the
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global unstructured mesh and the local turbulence meshes are then computed and stored. This
point marks the end of the preprocessing stage, as all the information required for the flow
solver and turbulence model is presently at hand. This information is then dumped to a file
which is used as input to the flow solver. Thus a turbulent flow mesh file consists of the fol-
lowing information:
1) Connectivity of the global unstructured mesh.
2) List of global unstructured mesh and coordinates.
3) List of the turbulence mesh normal stations, with each station pointing to the nodes which
constitute that station, as well as several turbulence modeling directives particular to that sta-
tion.
4) List of turbulence mesh nodes and their coordinates.
5) Interpolation coefficients and addresses for transfer of variables back and forth between the
global unstructured mesh and the local turbulent meshes.

At this point, the information no longer resembles a series of structured local turbulence
meshes with an overlaid global unstructured mesh. In fact the connectivity of the turbulence
meshes is not stored, and the turbulence mesh points and stations are not associated with any
particular turbulence mesh, nor are they ordered in any regular fashion. This constitutes the
minimum amount of information required for executing the flow solver and turbulence model,
and as such can be viewed as the definition of a preprocessed unstructured turbulent-flow
mesh.

The data structure employed for the turbulence mesh stations is depicted in Figure 1.
Since algebraic models are in general equilibrium turbulence models, the stations may appear
in random order and no information concerning neighboring stations is required. Each station
contains an integer list, which is dimensioned as JLMAX+3, where JLMAX represents the
maximum number of mesh points in any given station. The first JL entries in this list point to
the addresses of the mesh points which constitute the turbulence mesh station. This list is
ordered, beginning with the wall or wake boundary point, and terminating with the outer boun-
dary point. The JLMAX+I entry contains the number of points JL for that station. Hence,
when JL is less than JLMAX, empty entries c,. ur in the list. The JLMAX+2 entry indicates
to the turbulence model whether transition has occurred. For turbulence flow this entry is set
to 1, but in the laminar flow region, prior to transition, is set to 0. This entry is generally deter-
mined manually, for cases where forced transition is desired. The final ILMAX+3 entry indi-
cates the presence of a wall station (= 0) or a wake station. In the later case, this entry points
to the address of the station which lies directly on the opposite side of the wake line, such that
the two stations may be paired together to form a complete wake cut in the turbulence model-
ing routine.

When adaptive meshing is to be employed, additional information is required concerning
the triangular connectivity of the turbulence meshes. This information is thus appended to the
turbulence flow mesh file, although it is not used by the flow solver.

3. DESCRIPTION OF THE ALGEBRAIC TURBULENCE MODEL

In the previous section, a method for implementing an arbitrary algebraic-type turbulence
model on unstructured grids has been described. The specifics of the algebraic model
employed in this work will now be described. The model adopted is based on the Baldwin-
Lomax model [9], which is a two-layer algebraic model. The inner-layer eddy viscosity is
computed as
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(g~T) ,. = p t2 10

where p is the fluid density, o the vorticity, and I is a length scale which is proportional to the
distance from the wall (scaled by a damping factor). In the outer region, the eddy viscosity is
given by

(1T)ou., = K p FwKE FKL.B(y)
where K is a constant and

FWAj = function of (YMAX, FmAX)

F"". =function of ( YMX)
Y

y is the distance from the wall, or wake centerline, and F is proportional to the moment of vor-
ticity:

F = y Ic01 * damping factor
FMAX thus represents the maximum value of F along a given turbulence station, and YMAx is the
y-distance at which this maximum occurs. The turbulence length scales are thus determined by
I in the inner layer, and YMAx in the outer layer. For fully attached or midly separated flows
over simple geometries, a single well defined peak exists in the function F, along given stream-
wise stations. However, for flows over more complex configurations, where boundary layers

and wakes may interact and larger separation regions may occur, the function F may exhibit
multiple local maxima, and various methods for determining the appropriate length scales have

been proposed [13,14]. In general, it is found that a distinction needs to be made between wall

turbulence and wake turbulence.

3.1. Wall Turbulence

The Baldwin-Lomax model performs adequately for simple turbulent wall flows. How-
ever, in cases where additional wakes or neighboring wall boundary layers are present, such
that these structures are traversed by a wall turbulence mesh station, multiple peaks in the F
function are observed. Figure 2 depicts the case where a neighboring wake is traversed by a
wall turbulence mesh station. Since the vorticity becomes non-zero and y, which is measured
from the wall, is large in the wake region, the moment of vorticity exhibits a large secondary
peak in this region. Selection of this peak leads to an inappropriate length scale. The proper
length scale is that associated with the primary peak of F, which is located in the region of the
wall boundary layer. Thus, the search for the maximum value of F must be limited to this
region. For an isolated wall boundary layer, the vorticity is largest at the wall, and vanishes
monotonically and asymptotically as the far-field is approached. When a neighboring wake or
boundary layer is approached, the vorticity becomes negative, as the velocity begins to
decrease near the edge of this shear layer. Thus, by locating the zeros of the vorticity distribu-
tion along a given station, and limiting the search for the peak of F to the region between the
wall and the first zero in the vorticity, the appropriate length scale is obtained.

3.2. Wake Turbulence

In order to compute wake turbulence length scales, the location of the wake centerline
must first be determined. This cannot in general be assumed to coincide with the turbulence-

mesh wake-line boundary, since these merely represent initial guesses to the actual wake loca-
tions, provided in this case by a panel method solution. Since length scales are computed as

distances away from the wake centerline, these can be significantly misrepresented if the proper
wake centerline location is not employed. To locate the wake centerline and compute turbulent
wake length-scale quantities, a single station traversing the entire wake is required, raLt.2.T 'Uaa
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two individual stations, each on opposite sides of the wake line. Thus, the two corresponding
stations on either side of the wake line are loaded into a single temporary array, which
represents a complete station traversing the entire wake. The wake centerline corresponds to
the location of minimum (local) velocity or zero vorticity as shown in Figure 2. Thus the
zeros of the vorticity distribution along the cut are located, and the zero closest to the tur-
bulence mesh wake-line is identified as the location of the wake centerline. The two neighbor-
ing zeros of the vorticity, one on each side of the centerline, are then employed to limit the
search for the maximum of F, the moment of vorticity, in the wake region, as described in the
previous section.

3.3. Limitations

These modifications to the standard model enable more complex geometries to be han-
dled, and in principle, enable the treatment of confluent or merging boundary layers and wakes.
For example, as a boundary layer and a wake gradually merge, as shown in Figure 2, the loca-
tion of the zeros of the vorticity will be shifted, thus enabling the turbulence model to track the
process. However, the success of this method rests on the assumption of a relatively smooth
vorticity distribution and on the ability to generate a reasonable estimate of the location of the
wake centerline. For example, if the turbulence mesh wake-line does not fall in the same
vicinity as the actual wake centerline, then the vorticity zero closest to the mesh wake line may
not correspond to the location of the wake centerline. Furthermore, since vorticity represents a
difference in velocity, it tends to be somewhat noisy and may exhibit rather large spurious
oscillations. Thus, a filtering technique is employed to smooth the vorticity distribution and
remove any spurious oscillations. In the present work, two passes of a simple Laplacian
smoothing operator are applied along each turbulence mesh station to filter the vorticity distri-
bution. More sophisticated smoothing techniques based on Fourier methods may also be
experimented with in the future. However, it is important to realize that filtering is only
applied to the vorticity distribution in order to locate the zeros of the distribution, which in turn
determine the extent of the search regions, and the location of the wake centerline. The
unsmoothed vorticity values are employed in the calculation of all other turbulence modeling
quantities.

4. RESULTS

The present algebraic turbulence model implementation is used in conjunction with the
unstructured multigrid Navier-Stokes solver, previously described in [51, to compute the steady
turbulent compressible flow over single and multiple-element airfoil geometries. In the context
of a multigrid strategy, the turbulence model is only executed on the finest mesh of the
sequence, and thus only background turbulence meshes corresponding to the finest unstructured
mesh need be constructed. Within each multigrid cycle, the turbulence modeling routine is
executed on the finest grid, and the resulting eddy viscosities are interpolated up to the coarser
grids, where they are used in the multigrid correction equations. The whole process is very
efficient, and in general, the entire turbulent modeling routine, including the interpolation pro-
cedures, requires only 10% of the total time within a multigrid cycle. Memory requirements
are, however, increased by about 50% since extra variables and transfer coefficients must be
stored for the turbulence mesh stations. When adaptive meshing is employed, new finer
unstructured meshes are generated by adding new points and locally restructuring the previous
coarser mesh. These new meshes are then added to the multigrid sequence. The background
turbulence meshes corresponding to this new finer level are generated by adaptively refining
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and preprocessing the background meshes from the previous level, which themselves are now
discarded.

4.1. Single-Element Airfoil Results

As an initial test case, the turbulent flow over an RAE 2822 airfoil has been computed.
The freestream Mach number is 0.729, the Reynolds number is 6.5 million, the corrected
incidence is 2.31 degrees, and transition is fixed at 0.03 chords. This constitutes a well docu-
mented test case (Case 6) for turbulent transonic flow [151, which can be used to validate the
present solver. The unstructured mesh employed for this case is depicted in Figure 3. This
mesh contains 13,751 points of which 210 are on the airfoil surface. The average normal spac-
ings of the triangles on the airfoil surface is 0.00001 chords, resulting in cell aspect ratios of
the order of 1000:1 near the wall. The background turbulence mesh stations employed for
computing the algebraic turbulence model, which contain a total of 13,372 points, are depicted
in Figure 4. The computed surface pressure distribution and skin friction distribution are
displayed in Figures 5 and 6, respectively, where they are compared with experimental data
from [15]. Both quantities are seen to compare favorably with the experimental results, and the
computed lift coefficient of 0.7403 is well within the range reported in previously published
computational solutions, using structured meshes [16]. A total of five meshes were employed
in the multigrid sequence, with the coarsest mesh containing only 98 points. The convergence
rate for this case, as measured by the decrease in the RMS average of the density residuals
throughout the flow-field, versus the number of multigrid cycles, is depicted in Figure 7. An
average residual reduction of 0.955 per multigrid cycle is achieved on the finest grid, resulting
in a decrease of the residuals by 4 orders of magnitude over 200 cycles. Furthermore, the lift
and drag coefficients were converged to four significant figures within 90 cycles. Since each
multigrid cycle requires roughly 1.4 CPU seconds on a single processor of the CRAY-YMP
computer, engineering solutions could thus be obtained in approximately 2 minutes for this
case.

To demonstrate the advantages offered by adaptive meshing techniques, the same test
case has been recomputed using a sequence of adaptively generated meshes. The first four
meshes are identical to the four coarse meshes employed previously. The final two meshes are
obtained by successive adaptive refinements of the previous coarser mesh. The criterion for
adaptive refinement is based on a combination of the undivided difference of Mach number,
and the undivided difference in pressure. When the difference of one of these variables along
a particular mesh edge is found to be larger than the average of the differences across all mesh
edges, a new point is added midway along that edge. The finest adaptive mesh is shown in
Figure 8. This mesh contains 12,829 points, slightly less than the number of points of the
mesh of Figure 3, but exhibits twice the maximum resolution of the non-adapted mesh. The
newly adapted background turbulence mesh stations corresponding to this refined mesh are
depicted in Figure 9. A total of 13,011 mesh points are now contained in these stations. The
Mach contours of the solution computed on the unstructured mesh of Figure 8, using the
corresponding turbulence mesh stations of Figure 9, are shown in Figure 10, exhibiting a
sharper shock and boundary layer resolution using fewer mesh points than the previously non-
adapted solution. A total of six meshes (including two adaptive refinements) have been used in
the multigrid sequence to compute this case, yielding a fine grid convergence rate roughly
equivalent to that observed for the non-adapted case in Figure 7.
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4.2. Two-Element Airfoil Results

In the next test case, transonic flow over a two-element airfoil has been computed. The
configuration consists of a main airfoil with a leading edge slat. The freestream Mach number
is 0.5, the Reynolds number is 4.5 million, and the incidence is 7.5 degrees. A sequence of
five unstructured meshes was employed for this case, with the finest mesh containing 28,871
points. The main airfoil and the slat contain 208 and 228 surface points respectively. The
normal height of the triangles at the wall is 0.00002 chords, based on the chord of each indivi-
dual airfoil. In figure 11, a global view of the second finest mesh (7,272 points), and a close-
up view of the finest mesh are shown. A global view of the finest mesh is omitted, due to the
difficulties associated with plotting such dense grids. The background turbulence meshes
corresponding to the finest unstructured mesh level contain a total of 28,256 points. In Figure
12, the background turbulence meshes corresponding to the second finest level (7,415 tur-
bulence mesh points), which exhibit the same topology as the finer level meshes, are shown,
prior to the triangulation operation. The computed Mach contours for this case are depicted in
Figure 13. At these conditions, the flow is supercritical and a shock is formed on the upper
surface of the slat, as seen in the figure. The slat boundary layer thickens appreciably as it
passes through the shock, and a small region of separated flow is formed at the foot of the
shock. The wakes from both airfoils appear to be resolved reasonably well in the present cal-
culation. The flow-field distribution of eddy viscosity is illustrated in the contour plot of Fig-
ure 14. The turbulence model is seen to yield a smooth distribution of eddy viscosity in the
gap region, and between the main airfoil upper surface, and the wake of the slat, where the

two background turbulence meshes overlap, and where these two shear layers merge. The
computed surface pressure distribution for this case is compared with experimental wind-tunnel

data [17], in Figure 15. Good overall agreement is observed, including the prediction of the
height of the suction peaks and the shock strength and location. The convergence history for

this case is shown in Figure 16, where the fine grid residuals were reduced by 5 orders of
magnitude in 350 multigrid cycles, resulting in an average residual reduction rate of 0.968 per
multigrid cycle. The lift and drag coefficients could be converged to four significant figures in

approximately 75 cycles, requiring roughly 3.5 CPU minutes on a single processor of the

CRAY-YMP.

4.3. Four-Element Airfoil Case

The final test case consists of a four-element airfoil configuration. This represents a truly
complex geometry which is not easily amenable to structured mesh techniques and is of con-
siderable practical interest, as it relates to the design of high-lift devices for commercial air-
craft. This particular configuration has been the subject of extensive wind-tunnel testing [181,
and thus provides a suitable code "alidation test case. A multigrid sequence of five meshes
was employed to compute the flow about this configuration. The finest mesh of the sequence

contains 62,076 points of wh~ch 294 are on the surface of the slat, 211 on the surface of the
main airfoil, and 254 on both the vane and the trailing edge flap. The average width of the

elements at the wall is J.00002 chords for each airfoil, resulting in cell aspect ratios of the
order of 1000:1 in these regions. The background turbulence meshes are based on the same
boundary point resolution as the global unstructured mesh, and contain a total of 56,168 points.
Figure 17 provides a global view of the coarser level unstructured mesh (15,896 points), and a

close-up view in the region of the leading-edge slat of the finest mesh level. The background

turbulence meshes corresponding to the coarser level (16,886 turbulence mesh points) are dep-

icted in Figure 18, prior to the triangulation and preprocessing operations. For this case, the
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freestream Mach number is 0.2, the Reynolds number is 2.83 million, based on the chord of
the nested flap configuration, and the incidence is 8.18 degrees. At these conditions, the flow
is entirely subcritical, although compressibility effects remain important, since local Mach
numbers greater than 0.6 are achieved in the suction peaks. The computed Mach contours are
shown in Figure 19. The flow is mostly attached and a good resolution of the boundary layers
and wakes is achieved about all four airfoil elements. A comparison of the computed surface
pressure distribution with the experimental wind-tunnel data is given in Figure 20. Computed
and experimental values are seen to agree favorably in all regions, demonstrating a good pred-
iction of the suction peaks and lift on all airfoil elements. This solution required roughly 14
Mwords of memory and 15 minutes of CPU time on a single processor of the CRAY-YMP,
which corresponds to 150 multigrid cycles on the finest grid, during which the residuals were
reduced by approximately two and a half orders of magnitude.

5. CONCLUSIONS

An algebraic turbulence model, suitable for non-simple flows and geometries, has been

implemented successfully for use on unstructured and adaptive meshes. By combining a
highly-stretched unstructured-mesh generation method, a multigrid finite-element Navier-Stokes

solver, and the present algebraic turbulence model, turbulent flow fields may be computed
using fully unstructured meshes. The method is efficient in that solutions may be obtained
using on the order of 100 multigrid cycles, and the turbulence model consumes less than 10%
of the total time required to compute a solution. In order to accommodate complex flow situa-
tions, such as confluent boundary layers and wakes, modifications to the basic algebraic model
have been devised. These, however, are not foolproof, and further work in this area may be
required to increase the reliability of the model. For more complex flows, and flows with mas-
sive separation, multiple field-equation turbulence models may appear to be more suitable.
However, much research remains to be done before physically accurate as well as numerically
efficient field models can be routinely employed.
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Data-Structure for Turbulence Mesh Stations
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Delimitation of Boundary-Layer and Wake Search Regions for the

Algebraic Turbulence Model



Figure 3
Fully Unstructured Mesh with Hfigh Stretching Employed for Computing
Turbulent Flow Past an RAE 2822 Airfoil (Number of Points = 13751)



Figure 4
Turbulence Stations Employed for Computing Flow Past an RAE 2822 Airfoil

(Total Number of Points = 13372)
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Figure 5
Comparison of Computed Surface Pressure with Experimental Measurements for Flow
over an RAE 2822 Airfoil (Mach = 0.729, Re=6.5 million, Incidence = 2.31 degrees)
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Figre 8
Adaptively Generated Unstructured Mesh for Computing Flow

Past an RAE 2822 Airfoil (Number of Points M 12829)



Figure 9
Adaptively Generated Turbulence Mesh Stations for Computing Flow

Past an RAE 2822 Airfoil (Number of Points = 13011)
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Figure 10
Computed Mach Contours for Flow Past an RAE 2822 Airfoil on the

Adaptively Generated Unstructured Mesh
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Figure 11
Global View of Coarse Unstructured Mesh and Close-Up View of Fine

Unstructured Mesh Employed For Computing Flow Past a Two-Element Airfoil
(Coarse Mesh Points = 7272, Fine Mesh Points = 28871)



Figure 12
Ilustration of Background Turbulence Meshes Employed in the Turbulence

Modeling Routine for Computing Flow Past a Two-Element Airfoil
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Figure 13
Computed Mach Contours for Flow Past a Two-Element Airfoil

(Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees)
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Figure 14
Contours of Eddy Viscosity Produced by the Algebraic Turbulence Model

for the Flow Past a Two-Element Airfoil
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Figure 15
Comparison of Computed Surface Pressure Distribution with Experimental

Wind-Tunnel Data for Turbulent Transonic Flow Past a Two-Element Airfoil
(Mach =0.5, Re =4.5 million, Incidence =7.5 degrees)
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Figure 17
Global View of Coarse Unstructwted Mesh and Close-Up View of Fine

Unstructured Mesh Employed for Computing Flow Past a Four-Element Airfoil
(Coarse Mesh Points - 15896, Fine Mesh Points = 62076)



-26-

Figure 18
Illustration of Background Turbulence Meshes Employed for Computing

Turbulent Flow Past a Four-Element Airfoil Configuration
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Figure 19
Computed Mach Contours for the Compressible Turbulent Flow

Past a Four-Elenent Airfoil Configuration
(Mach - 0.2. Re - 2.83 million. Incidence - 8.18 degrees)
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Figure 20
Comparison of Computed Surface Pressure with Experimental Wind-Tunnel

Data for Flow Past a Four-Element Airfoil Configuration
(Mach = 0.2, Re = 2.83 million, Incidence = 8.18 degrees)
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